Restoring lost movement from stroke may be possible, study suggests

Scientists have long thought that motor function lost from a stroke can’t be restored, but a new animal study suggests inducing a second stroke may make that possible.

Researchers at Johns Hopkins University found that when they induced a second stroke near the region of a first stroke in mice, the rodents could grab food pellets with their once-disabled paws as well as they had pre-stroke.

The study authors said they don’t encourage inducing stroke in humans to reverse lost movement from a previous stroke. But, they argued in their paper that the results hint mammals’ brains that have experienced stroke may be more “plastic” than originally thought—and that this conclusion may aid in the development of another therapy that would help this patient population.

“If we can better understand how to reopen or extend the optimal recovery period after a stroke, then we might indeed change how we treat patients for the better,” study author Dr. Steven Zeiler, Ph.D., an assistant professor of neurology at the Johns Hopkins University School of Medicine, said in a news release.

In a previous study, researchers at Johns Hopkins found that the optimal window for stroke recovery is seven days after the event has occurred, but in the current animal model, they found that a common antidepressant, fluoxetine, helped lengthen that window. Before the initial study, scientists believed that seven-day period was inflexible.

“Our study adds new strong and convincing evidence that there is a sensitive period following stroke where it’s easiest to relearn motor movements— a topic that is still debated among stroke researchers,” Zeiler said in the release.

 

Source:

Fox News – Health

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s